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INVOLVING CONTACT PHENOMENA

by

Werner Goldsmith

Research Department

I ABSTRACT. Theoretical relations and experimental data are pre-
S.sented for the collision of two objects at intermediate velocities

when both wave propagation and relative indentation of the bodies
must be considered. Equations are developed that combine a

Sdescription of wave phenomena in beams, bars, and plates with a
law of contact. Experimental results are shown involving the
impact of spheres and conically headed projectiles on bars and
beams, and a comparison with the predictions of several theories

M is provided.
The analytical relations are based on equations of motion

Streating both bars and beams as one-dimensional systems, with the
effect of second-order correction factors neglected. The theory
of Hertz and a simple postulate concerning perfectly plastic flow
at the contact point are compared with the results of tests
designed to relate experimentally the contact force as a function
of the indentation in a regime where the major portion of the
cross section at the point of contact remains elastic. The data
were obtained from strain-gage and framing camera measurements
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NCOMENCLATURE

a Radius of crater at free surface

A Area of cross section

b Half thickness of plate or beam

c Wave or phase velocity

C Dilatational wave velocity

c2  Shear wave velocity

c Group velocity9

co Rod wave velocity, co =

CR Velocity of Payleigh waves

E Young's modulus

ED Dynamic Young's modulus

Coefficient of friction
Wave number

F Force

f,g Functions
E

G Lame' constant, G =

h f2 - p2/C 2

i Index
k12 f2 _ p2/c22

k Experimental constant in experimental indentation laws
Polar radius of gyration

iii
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[ Constant In the Hertz theory of Coatits

l,mn Direction cosines

L Bar length

L $ Laplace operator

m Mass

n Exponent in experimental indentation laV

p Circular frequency

PO Flow pressure

qj Component coordinate

Radial coordinater Radius

R Bar radius

s Position

t Time

uj Component of displacement vector

v Initial velocity0

w Transverse displacement

X Eigenfunction

x,y,z Rectangular coordinates

a Approach

ar Permanent approach

0 Half-cone angle

_1, 02 Correction factors for one-dimensional longitudinal wave solution
in bars

7ij Component of shear strain

SLaplacian operator

iv
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A Dilatation

i Component of normal strain

6l, 12 Warping parameters

r Ratio of average shear strain to shear strain at neutral axis

X Lamb constant, X =l , •E

A Wavelength

p Poisson's ratio

p Mass density

pt Target density

ai Normal stress component

C Yield stressY

Duration of contact
Variable of integration

ir Shear stress component

0 Relaxation function

0, Frequency function, 0i 2 2 2

SCreep function

w Natural frequency, ) =

v
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IMACT AT INTERMEDIATE VELOCITIES INVOLVING CONTACT PHENOMENA

The collision of two solids may involve a variety of processes whose
existence and relative importance depend almost exclusively on the shapes
and physical characteristics of the objects and, most important, on the
relative impact velocity. The relevant mechanical behavior of the mate-
rials is ordinarily classified as being elastic, plastic, viscous, or a
combination of these; a quantitative description of these properties is
formulated as a relation between stresses and strains and, in the case
of time-dependent effects, their respective rates. For example, glass
is treated as an ideal elastic substance, while most metals are usually
regarded as elastic up to a certain level, beyond which plastic defor-
mation occurs. All synthetics and, under certain conditions, a few
metals such as lead are considered to be either viscoelastic, visco-
plastic, or elasto-viscous-plastic. For processes involving significant
changes in temperature, the appropriate mechanical equation of state is
coupled through this parameter to a second relation specifying the
thermodynamic behavior of the material.

Impact is differentiated from static or rapid loading in that the
forces acting at the contact point are created and removed in a very
short time interval, generating stress waves that subsequently propagate
throughout the entire system. In addition, the collision produces a
relative indentation at the contact point except in the case of perfectly
normal contact of plane-ended bars of identical cross section. It has
been demonstrated by the drop of ¼-inch-diameter hardened steel ball
bearings on extremely hard metallic plates (Ref. 1) that such an inden-
tation results in a permanent crater except in the velocity region below
about 3 in/sec, which is of insignificant practical importance. One
further exception should be noted: The energy transmitted by wave action
in the collision of spheres of equal size has been shown to be small com-
pared to the initial kinetic energy of the system (Ref. 2), and is thus
usually neglected relative to the energy consumed in the local inden-
tation. In all other collisions involving neither compressibility
effects nor disintegration of either striker or target, wave propagation
and contact deformation constitute the predominant manifestations of the
phenomenon. This regime involves stress levels roughly within two orders
of magnitude of the yield stress and particle velocities below the
velocity of sound in the material. In accordance with custom, the pro-
cess is treated as isothermal for the sake of simplicity, so that
temperature and other thermodynamic effects need not be considered.

II
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At higher velocities, either or both of the impinging objects may
fracture, shatter, or be pulverized with large attendant dissipation of
energy. At still greater impact speeds, where pressures of the order of
the elastic modulus of the substances are generated, the solids will no
longer remain incompressible, and the event must be analyzed by the
methods of hydrodynamics. Collisions in this domain are accompanied by
shock iieating and frequently by phase transitions or instantaneous
vaporization of the participating bodies.

This presentation is concerned with the results of an experimental
program that has been conducted to examine the effects of collisions of
hard metallic strikers on metallic bars and beams. The materials and
range of impact velocities were chosen so that a permanent indentation
was generated at the contact point, but the propagation of plastic strain
v-: '•mited to the vicinity of this region and did not permeate through-
out the entire cross section. In consequence, the phenomena observed are
governed by the elastic-wave effects in the target produced by the con-
tact force which, in turn, depends upon the geometrical and kinematical
conditions of the impact and the properties of the colliding materials.
A major objective of the investigation was the establishment of force-
indentation relations that govern the contact of strikers of various
shapes with plane surfaces of various metals. To supply the proper back-
ground, a short summary of analyses of elastic-wave-propagation processes
in simple structural members if first presented, followed by a brief
description of various theoretical force-indentation relations derived
on the basis of differing assumptions concerning the material behavior.

The process of wave propagation in solids without regard to its
initiation has been studied extensively by analytical means; the results
of these investigations have been summarized in a number of references
(Ref. 3-13). The description of these phenomena invariably involves a
combination of a differential equation of motion with a suitable equation
of state; the solution of these relations, which expresses the effect of
the transient, is profoundly affected by both the geometry and the
assumed behavior of the medium. The largest amount of information has
been developed for a homogeneous, isotropic, elastic material whose
equation of state is represented by Hooke's law in the form

a = X6 + 2Gc Tjk = G ~jk J,k = 1,2,3 ()

where aj and Tjk are the normal and shearing components of stress, e
and 7-k the corresponding components of strain, the dilatation / is ihe
sum of the normal strains, and X and G are the elastic constants defining
the medium, called the Lam6 constants. The latter can be expressed in
terms of the more familiar Young's modulus E and Poisson ratio ýi by the
relations

X= 1 i2 G E (2)

2
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In conjunction with the usual definitions of infinitesimal strain and
the fundamental law of Newtonian dynamics, Eq. 1 leads to the displace-
ment equations of motion

-2u +¢+ j t2 j • ,2,5 ¢3)

where uj are the components of the displacement vector, qj are the
corresponding coordinates, 72 is the second Laplacian operator, and p is
the mass density.

In a body of infinite extent, the solution of Eq. 3 is readily accom-
plished, as the requirements on stresses at bounding surfaces need not
be considered. Since the displacement vector can be decomposed into an
equivolumnial and an irrotational part, either component may be permitted
to vanish separately, resulting in the differential equations

uj =2c, 2 u7 i=cV 2 u jl1,2,0 (4)

corresponding to dilatational and divergenceless waves, which travel
with constant velocity of

cl -P and c= (5)

respectively. The solution of Eq. 4 can be expressed either in the form

u J f(lx + my + nz - ct) + g(lx + my + nz + ct) (6)

for a rectangular coordinate system, or as

u = [f(r-ct) + g(r+ct)] (7)uj r

for a spherically symmetric case where uj depends spatially only on
radius r. Quantities 1, m, and n denote-direction cosines, and c is the
apprcpriate wave velocity. It can also be shown (Ref. 14) that all plane
waves in an infinite homogeneous isotropic elastic medium propagate with
one of the two velocities given by Eq. 5.

The precise analysis of wave phenomena in elastic media with bounding
surfaces is invariably accomplished by examination of the behavior of an
infinite harmonic wave train of natural frequency w = p/2v and wavelength
A = 27/f exhibiting displacements

u = A e qj - pt) j=1,2,0 (8)

3
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The coefficient Aj, a function of the coordinates and the wavelength (or,
alternatively, the frequency) describes the nature of the deformations,
or mode shapes of the body and is determined by the type of wave assumed
to be extant and the character of the boundary conditions. The latter
also define a relation between p and f, known as the frequency equation,
from which the velocity of propagation of a single wave component, known
as the phase velocity c = p/f, is delineated. The rate of propagation
of a number of components with nearly identical wavelengths is called
the group velocity Cg, defined by

c = c dc (9)
Sc- dA

and corresponds to the rate of energy transfer. If c is independent of
wavelength, then c ý- c ; the form of the wave is then transmitted
throughout the body without change and the phenomenon is termed non-
dispersive. In the reverse case, an alteration in the shape of a pulse
consisting of various harmonic components will be produced by a disper-
sive mechanism that arises from successive reflections of waves between
the bounding surfaces where additional pulses of similar and different
mode shape are initiated. The pulse form and frequency spectrum for a
given steady wave train can be used for an examination of the propagation
of the corresponding transient upon superposition of components by means
of a Fourier integral and subsequent synthesis of the pulse from the fre-
quency diagram, a technique known as Kelvin's method of stationary phase
(Ref. 15).

Exact solutions of the combination of Eq. 3 and 8 and the appropriate
boundary conditions have been developed only for bodies infinite in the
direction of propagation, particularly for the half-space, thin plates,
straight circular bars, and shells. The first of these, initially
described by PRyleigh (Ref. 16), leads to a surface wave exhibiting dis-
placements ux and uy along axes in the free surface parallel and perpen-
dicular to the direction of propagation and a displacement uz along the
normal to the free surface, respectively, given by

Ux = iBf[e-qz 2qs e-sz]ei(fx-pt) (10)

Uy =o (11)

= e s2+e - e (12)

where

-- 2 f2[ c R and q2  2 (13)

2-2
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B is an arbitrary constant, and the wave exhibits a nondispersive phase
velocity cR determined by the frequency equation

(R)6 - 8 •(e)4 + (24- 16 _-2," " +1

c 2 c2 2-+ c 6~ 2(2-2

The character of such waves produced by various types of surface sources,
known as Lamb's problem, has also been treated exhaustively. The second
case, originally investigated by Rayleigh (Ref. 17) and Lamb (Ref. 18),
led to the frequency equations

tanh k'b 4f 2h'k' tanh k'b (f 2 +k' 2 )2

tanh' h'b (f2+k,2)2 and tanh h'b 24fh, (15)

where
h 2 2 ad2ht2 = f2 _ p 22 and k,2 = f2 _ p...._ (16)

Cl c2 2

for the symmetric and antisymmetric modes of each motion, respectively,
and where b denotes the half-thickness of the plate. Equation 15
exhibits an infinite number of roots, each corresponding to a harmonic
of the appropriate mode of transmission. A number of additional results
for this situation have recently been described, encompassing symmetric,
antisymmetric, and torsional motions and their coupled effects.

The circular bar, initially treated by Pochhanmer (Ref. 19) and
Chree (Ref. 20), has also been found to permit three basic modes of
transmission, each of which exhibits an infinite number of harmonics,
corresponding to symmetric (longitudinal), antisymmetric (bending), and
shear waves, respectively (Ref. 4 and 14). The complicated frequency
equations for the first two types of modes have been solved numerically,
and the results for the first three harmonics are shown in Fig. 1 and 2
for a value of P = 0.29, corresponding to steel (Ref. 6 and 21). The
lowest harmonic of the torsional mode is nondispersive and propagates
with velocity c2 . A generalization of the analysis for the circular rod
has recently been published that includes coupling between the modes and
also gives an excellent account of approximate theories (Ref. 22).
Corresponding results have been established for shells (Ref. 23-30),
while other studies have been conducted to expose the complex branches
of the frequency spectrum that delineate nonpropagating waves (Ref. 31
and 32). The analytical developments have often been supported by
experimental investigations (Ref. 33-36).

The rigorous solutions of elastodynamics cannot be readily applied
to a study of impact problems due to both their complicated form and
their failure to encompass bodies of finite dimensions in the direction
of propagation. The second difficulty arises from the fact that the
stress-free conditions on the terminal faces have thus far prevented the
establishment of an exact three-dimensional analysis. Accordingly,

5¼
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various approximations have been devised that incorporate a considerably
lower level of mathematical complexity and correspondingly greater
manageability and permit a description of wave processes in finite
bodies, yet still retain the essential physical features of the "exact"
equations. The simplifications involved most frequently assume the form
of solely one-dimensional considerations and the hypothesis of plane
cross sections remaining plane. The efficacy of such approximate theo-
ries is usually judged by the degree of correlation between their phase
and group velocity spectra and those of the rigorous solutions.

One-dimensional representations have been developed for rods, beams,
plates, curved bars, and other simple structures for a variety of
boundary conditions. Under the assumption of uniform stress distribution
across any section and the neglect of radial inertia, the equation for
longitudinal wave propagation in the bar is given by

S=2u 
where c (17)0o 6x2 o p

in terms of displacement u in the x-direction. The solution of this

equation is given by

u = f(x - c0 t) + g(x + Cot) (18)

that indicates a nondispersive phenomenon propagating at constant "rod"
velocity co. Inspection of Fig. 1 reveals that this behavior corresponds
to the lowest harmonic of the exact solution only for wavelengths large
(greater than 5) relative to the characteristic dimension, or equivalent
radius, of the bar. Functions f and g, related by the boundary condition
at the distal end of the bar, are uniquely determined by the initial
shape of the pulse. In consequence, the displacement u(x,t) resulting
from the action of a time-dependent force applied over the terminal face
x = 0 of a bar of length L can be expressed as

u(x,t) = 0 t <

c0 (19)
u(x,t) = o F(t - -x)dt t > x

pAco 0 - Co

during the initial passage of the pulse. Additional terms must be
introduced on the right-hand side of this equation whenever the effect
of subsequent reflectionG at either end of the bar is first experienced
at position x.

6
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FIG. 1. Phase Velocity of Longitudinal Waves in
Cylindrical Rods of Infinite Length.

7



NAvwEPS EPORT 8088

2.4-

2.2 -

:)/ __-o. ___

2.0
3rd MODE /

1. 8 *- POCHHAMMER-CHREE THEORY
STIMOSHENKO THEORY

1.6 ELEMENTARY THEORY1.6-- _

1.4

C
cO 1.2

1.0 MODE

/
0.8 I

0.6

0.

0. 2

o L

0 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
R

FIG. 2. Phase Velocity of Transverse Waves in
Cylindrical Rods of Infinite Length.
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The next higher approximation incorporates the effect of radial
inertia in the wave equation, which is now given by (Ref. 14)

22 4 u 2 uc0
u- _L U 2 where c = 0•0U k c° 1 (20)

where k is the polar radius of gyration of the section. This model
yields a better correlation over a wider range of wavelengths for the
phase velocity of the lowest harmonic with the exact solution, as shown
in Fig. 1, but leads to the incorrect limit c - 0 as A approaches 0
(thus permitting an infinite velocity of propagation of the wave front)
(Ref. 15), for which the actual value should be c -# c2 . The wave phe-
nomenon described by Eq. 20 is dispersive, and the displacement resulting
from a force F(t) suddenly applied at the origin x = 0 of a semi-infinite
rod at time t = 0 is

u(xt) = 0 t <c
- IX0

coc

t e o/ O (1

u(x,t) r c- F(t-T)dT t > (21

o0 TY 1 + -I 2 2 •2c°

¶11+ 2C
0

that may be compared with Eq. 19.

An additional refinement accounts for the action of radial shear
stresses that may be introduced by one of several techniques. The first
of these (Ref. 37) involves the integration of the transverse stresses
over the cross section, which leads to an improved expression for the
axial stress in terms of displacement u. Upon substitution in the one-
dimensional equation of motion, there results the relation

2 2u 22 4 u2 22 4u
{{=c2 •u +l2k2 •4U •22 •4 (22)

u=c x-'-2 + x2t2 Lkc 2

that exhibits a phase velocity given by

co

The second method (Ref. 38--40) defines two relations for the axial and
shear stresses, respectively, in terms of axial and radial displacements

9
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uz and ur that contain two arbitrary correction factors 01 and 02 for a
circular bar of radius R, which lead to the differential equations

2u2

22 a5 8(%+G)u - 4plR '~~PR iz

C)z2 6 r 2.(24)
201%H 7- + (%+2G)R2 pR =u2

2 r 2..

and a phase velocity relation

222 2 22
1 -• .2R2  c 2 1[2c 2- c-2c 0 (25)

10 k R2

Factors P and 2 are adjusted so as to provide an optimum fit of Eq. 25
with the lowest harmonic of tne exact relation as shown in Fig. 1. Ref-
erence 41 presents a critical discussion of the efficacy of these two
methods, while alternative procedures (Ref. 42-44) summarized in Ref. 22,
do not afford any improvement in these results relative to the pre-
dictions of the Pochhammer-Chree equations. For any of these theories,
however, the displacements produced by time-dependent forces can only be
computed approximately under limiting conditions and even then only with
enormous effort.

The zero-order approximation for the transverse or bending motion of
a uniform beam of cross sectional area A and length L is known as the
Euler equation. In terms of displacement w, it is given by

co 2k, 2 6 = (26)

01

that leads to a phase velocity

c = cofk1  (27)

where k, is the radius of gyration of the section about a centroidal
axis perpendicular to the plane of bending. Displacements resulting
from the action of a force F(s,t) applied at position x = s can be
determined from the relation

f J 1 L F(T)sin wi (t-T)d¶ (28)

Wi 
xi2dx 0

10010



NAVWEPS RPORT 8088

where eigenfunctions Xi and frequencies Wi can be derived from Eq. 26
for any set of boundary conditions. For a simply supported beam, where
Xi = sin inx/L and aWj i 2=1 2 cokl/L 2 , the deflection due to a central
load F(jL,t) is given by

1L (_l) 2 sin Ix t

w(xt) = 2 2 L F()sin wi(t-r)dr (29)
v Co0klpA " 0

Examination of Eq. 27 and Fig. 2 indicates that reasonable correspondence
of the phase velocity with the first harmonic of the Pochhammer-Chree
relations prevails only at very long wavelengths and that infinitely short
wavelength components propagate at infinite velocities. This obvious
physical defect has resulted in the addition of various correction terms,
including some or all of the effects of rotatory inertia, transverse
shear, warping of the section, and lateral contraction (Ref. 42-46).
The most widely employed of these is the Timoshenko equation (Ref. 47),
which incorporates the first two of these features and is given by

2 ~ p 4wk,2 [1 ++-= 4ww (50)cok 1  J. t)Gj;x2-t2 IG 77 2

The phase velocity for this equation can be determined from the relation

Co2 E c 2 1 E

c 'G(7 lc f2k 2  IG

that admits of two sets of roots corresponding to the two lowest har-
monics of the Pochhammer solution, the result being shown in Fig. 2.
Term n represents the ratio of average shear strain across the section
to that at the neutral axis; values of 0.667 and 0.75 have been computed
for a rectangular and circular cross section, respectively, under the
assumption of the existence of a distribution identical to that occurring
during static loading. Alternatively, values of 0.822 and 0.847 have
been proposed for the same section geometries so that an optimum fit
between the spectrum of Eq. 31 and that of the exact equations is
obtained.

When warping of the cross section is also considered, Eq. 30 and 31
are slightly modified, yielding

c 2 wa w 0 (32)

o 1 - - k 1  2 G 2 + --7 (
6G 22 't at Zat
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(0 2 l c+ ( ) 2

c iG c0  2k 2 nG

The deflection of a simply supported beam under the action of a central
load is now given by (Ref. 13)

00 i-1
w~xt) • (1)--2- i~rx o

w(xt) =i~isin -- Ft F(v)sin ci(t-¶)dr (34)
0

where
122k,2 Oi2L2

,+ 1  - i +Y2Gi22

and freqency mni is determined from

2~ eii 2  4 4 4-_

2 +k2 1 612E t) k (1+ ZIE 1 2 A2 2  4Ek I 1 4 A-C
(36)

Eq. 34 must be summed over the two sets of frequencies derived from
Eq. 33. Warping parameters -1 and F2 in Eq. 32, 33, and 35 can again be
computed by considering the dynamic strain distribution to be the same
as that under static conditions, yielding values of -l 0.800, z2 =
68/105 for a rectangular and l = 5/6, ?2 = 101/144 for a circular cross
section, respectively. Corrections incorporated in the one-dimensional
theory of torsional wave propagation in a circular rod (Ref. 22) still
yield the same nondispersive wave velocity c2 derived for the lowest
harmonic of the corresponding exact solution.

Although not of immediate concern in this presentation, departure of
a material from homogeneous isotropic elasticity introduces serious com-
plications in the corresponding analysis of wave-propagation processes,
since a considerably more sophisticated constitutive equation must now
be introduced into the equations of motion. Such substances are classi-
fied according to the character of the relation describing the general
mechanism of deformation and may be categorized under the following
headings: aeolotropic elastic, multiple phase and granular, elasto-
plastic, and viscoelastic. In spite of the early stipulation of the
general stress-strain relations for the first of these classes (Ref. 14),
the development of wave-propagation theories in such materials is still
in an embryonic state even for bodies of infinite extent, and virtually
nonexistent for bounded configurations (Ref. 7). The establishment of
suitable constitutive equations and the development of wave analyses for

12
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substances in the second group has received increasing attention in
recent years (Ref. 48-51), but theoretical predictions based on the
simple models postulated are not as yet adequately corroborated by
experimental results.

During the last two decades, investigations concerning wave processes
in elasto-plastic materials have been pursued energetically; in addition
to bodies without bounds, the dynamic deformation of rods, wires, beams,
slabs, plates, membranes, and shells have been mathematically described
and, in some cases, experimentally ascertained. Two separate approaches
for the specification of the equation of state have been adopted: In
the first, the stress is considered to be a function solely of the state
of strain, while the second also incorporates a dependence upon the rate
of load application. The first procedure leads to a much simpler mathe-
matical formulation of the problem, but appears to be applicable only to
those materials not exhibiting a yield point and little strain-rate sensi-
tivity, such as single crystals of aluminum. Considerable controversy
prevails at the present time concerning both the applicability and
physical significance of either of these hypotheses, particularly when
these formulations are related to the predictions of the theory of dis-
locationr. Furthermore, experimental verification of either of these
postulates has been frequently obscured by inability to isolate the rate
effects from other disturbing influences produced either by the manner
of loading or geometrical constraints. A summary of advances in this
area may be found in Eef. 9, 12, and 13.

Wave-propagation analyses in viscoelastic bodies have been confined
almost entirely to linear materials, that is, those in which the super-
position of a set of stress pulses produces a strain history equal to
the sum of the strain cycles generated by each pulse. Many synthetic
materials, including some of the more common photoelastic substances,
conform to this requirement and exhibit significant anelastic effects in
the linear range. Most metals, however, are not encompassed by such a
description, remaining essentially elastic until a permanent set not
explicitly dependent on time is initiated. Viscoelastic materials, which
include the well-known Kelvin-Voigt, Maxwell, and standard linear solid,
are described in terms of two functions * and 0 that are simply related
in terms of their Laplace transforms. The creep function * defines the
strain history under the action of an applied stress, while the relaxation
function 0 denotes the stress response due to the application of a time-
dependent strain. Under uniaxial conditions, this is described by I

Applied load Response

a = 0 ex(t) =o t < 0

Creep: +!t dax() )(37)
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where ED is the dynamic Young's modulus. Dynamic problems involving
these materials have been most frequently analyzed by operational methods;
when the boundary conditions are invariant in time, a correspondence
principle exists for these substances. In accordance with this principle,
the governing equation of the system can be determined in the transformed
plane from the identical elastic case upon replacement of the shear
modulus G by the term G(l - L Jjx f) where L i denotes the Laplacian
operator.

Solutions of viscoelastic wave-propagation problems have been virtu-
ally limited to one-dimensional motion (Ref. 9, 13, and 52-57) and gener-
ally require either a number of approximations or numerical integration
or both. However, the results obtained provide some measure of the
attenuation of the pulse and the dispersion produced by the viscous
effects. Variations of phase velocity and attenuation with frequency
have also been determined experimentally (Ref. 10, 58, and 59). A
general account of this topic is given in Ref. 60.

A number of equations have been proposed that express the force of
contact F for two bodies subjected to mutual compression along the common
normal to their surfaces at the contact point in terms of the total
deformation along this line, a quantity called the approach a. The
classical relation of this type was derived by Hertz (Ref. 61) on the
basis of an electrostatic analogy for the static compression of two
elastic bodies whose contact surfaces could be described by equations of
the second degree. This equation states that

F = k2 a/2 (39)

where k2 is a constant dependent upon the geometrical and elastic proper-
ties of the bodies. The value of k2 is given by

4 - 1-l 1-••-
25 L E 2

for the indentation of a plane surface "1" by a body "2" with a spherical
contact surface of radius R. Equation 39 is inapplicable when the
indenter is either conical, pyramidal, or wedge-shaped, since the geo-
metrical restriction imrosed on the use of this relation is violated.
The Hertz law has been remarkably successful in predicting many experi-
mentally observed features of indentation processes not only under static,
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but also under dynamic conditions where plastic flow did not permeate
throughout the entire cross section. The explanation for this corre-
lation can be found in the fact that only a small percentage of the
initial impact energy was employed to produce the plastic dent. The
applicability of the relation, under these circumstances, is, however,
questionable on theoretical grounds since its derivation is based on
successive equilibrium states, and the permanent crater produced except
at minimal velocities is not encompassed by this law. The Hertz relation
has been extended to the contact of viscoelastic bodies (Ref. 62-64),
but its validity is restricted to the approach phase of the process.

The variation of the contact force for the quasi-static indentation
of a sphere of radius R with the radius of the permanent crater a was
determined empirically by M4eyer (Ref. 65 and 66) from a large number of
tests in the plastic range as

F = Ca2 (a/R) n-2 (41)

where C and n are constants for a particular set of materials. For a
given size of the indenter, Eq. 41 may be expressed as

F = kan where k C (42)
Rn-2

that bears a superficial resemblance to the form of Eq. 39. The value
of n for most work-hardened metals was found to be slightly larger than
2 and that for fully annealed metals was observed to be about 2.5 for
crater sizes greater than 0.1 (Ref. 66). It has been suggested that the
Meyer relation could be extended to include collisions in a manner simi-
lar to the extrapolation of the applicability of the Hertz equation for
the corresponding elastic case (Ref. 67 and 68).

A widely employed device leading to considerable mathematical simpli-
fication of the analysis of indentation processes has been the stipulation
of a constant average resistive pressure or mean flow pressure Po at the
interface. The use of such a postulate for the contact of a completely
rigid sphere and a deformable semi-infinite solid reduces Eq. 42 to

F = po0 (2-a) (43)
or

F s 21p 0 a (44)

provided a is not too large. Actually, a theoretical solution for the
limiting condition of incipient plastic flow based on the stress distri-
bution resulting from the use of Eq. 39 predicts that the magnitude of
po at this sta e is given by po s 1.1 a , where a is the uniaxial yield
stress (Ref. 1). On the other hand; boXh theoretical and experimental
evidence indicates that, under quasi-static conditions of fully plastic
flow, the magnitude of po m 31a or possibly even higher in the presence
of significant frictional effets (Ref. 66). The
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constant flow pressure is thus a priori an approximation that is at best
only roughly satisfied during certain phases of the indentation process.
Other quasi-theoretical relations for the value of the flow pressure
generated during the impact of a sphere on a half-space have been pro-
posed as a finction of the initial energy, the volume of the indentation,
the coefficient of restitution, and the Meyer index n of Eq. 42 (Ref. 66).

A combination of Eq. 39 and the constant flow pressure hypothesis
was employed to construct a theory for the collision of soft metallic
spheres (Ref. 69 and 70). This analysis encompasses three regimes:
(1) an initial elastic compression governed by Eq. 39; (2) an additional
plastic deformation in a central region occurring at constant pressure
po, surrounded by an elastic annulus; and (3) a restitution process
involving elastic recovery of the plastic zone. Although subject to
valid criticism, this theory has achieved a modicum of success in pre-
dicting contact durations and terminal velocities of the colliding
spheres at impact velocities below 25 in/sec. Equation 44 has also been
employed in the correlation of experimental data in the same velocity
range for the impact of crossed cylinders whose elastic restitution pro-
cess was considered to be governed by Eq. 39 with a replaced by a - ar,
where ar is the terminal approach under no load, or permanent crater
depth (Ref. 71).

An elastic regime is not present in the case of the penetration of a
plane surface by a hard conical or pyramidal indenter, as plastic flow
is generated instantaneously. A number of penetration relations have
been proposed for the conical indenter of mass m on the basis of a con-
stant flow pressure assumption and negligible restitution (Ref. 66 and
72), the simplest being

F = gp0a2tan2 = vp0a2 (45)

where P is the half-cone angle and po 3ay. When frictional effects in
the form of a constant coefficient f and inertial effects of the target
due to a term pt&2 are also considered, Eq. 45 is modified to read
(Ref. 73)

(sinp + fcos)a•3tan2sin(
F=vtanp(sinp+ fcosP) 2 F2 2 3mt
F=s aL + Ptv sin j] e 3m+6

where pt is the density of the target and vo the initial velocity. When
the quantity pt&2 is small compared to po, Eq. 46 reduces to

F = atanp(sinp+ fcos1) poa2  
(47)

Both Eq. 45 and 47 represent special cases of Eq. 42 with n = 2.
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Since only meager experimental evidence exists concerning the
accuracy of the postulated force-indentation relations at low impact
velocities and is not available at intermediate velocities, a compre-
hensive program of tests has been undertaken to check the validity of
such proposed equations under dynamic conditions over a wide spectrum of
initial velocities for strikers with spherical and conical contact sur-
faces (Ref. 74-76). A cumparison of the results with data obtained for
similar geometries under quasi-static conditions was also performed to
determine whether the latter could serve as an acceptable substitute for
the corresponding dynamic relation or else could be so converted by means
of a simple correction factor. Such a procedure would be of considerable
practical value since experimental investigations of this type are far
more easily and accurately performed under quasi-static loading con-
ditions. Establishment of suitable dynamic force-indentation equations
permits, at least in principle, the theoretical analysis of the entire
collision problem provided the response of the target to an external
load, which is presumed to be completely elastic except for the formation
of the crater, can be specified. As an example of the application of
these empirical relations, the recponse of a beam subjected to transverse
impact by a spherical striker has been evaluated.

The Hopkinson bar was chosen as the mechanism for the study of con-
tact phenomena both because of its proven utility in numerous other
investigations and because its response has been carefully analyzed both
theoretically and experimentally (Ref. 15, 39, 40, and 77). The presence
of dispersion due to three-dimensional effects during longitudinal pulse
transmission in the bar has been amply documented; however, the manifes-
tations of this feature can be minimized by the use of a circular rod
and a sufficiently large ratio of pulse length to bar diameter, a minimum
value of 8 to 10 ensuring the retention of the principal characteristics
of the wave (Ref. 77 and 78). Additional dispersion will be produced
when the applied load is not uniformly distributed over the end face of
the rod. This situation is encountered in the impact of strikers with
spherical or conical tips; the initial transient is now a spherical
dilatation wave that, upon successive reflections from the lateral bounda-
ries, rapidly approaches the character of a plane wave but is never com-
pletely uniformly distributed across the section. A further study of
these factors was thus required to determine: (1) whether surface meas-
urements by means of bonded wire strain gages could adequately represent
the shape of the pulse over the entire cross section and (2), if so,
where such gages should be attacned to the bar to both avoid the plastic
zone at the contact point and strike a suitable compromise to minimize
the dispersive effects due to the two mechanisms described.

The ballistic arrangement for all tests consisted of a horizontal air
gun composed of a 3-foot-long brass tube with an inside diameter of
0.505 inch, slotted near the muzzle end. The gun was capable of firing
a 0.0185-pound projectile at velocities up to 300 ft/sec upon release of
air from the pressure chamber by means of a quick-acting valve (Ref. 78).
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In the longitudinal impact tests, the target was either ballistically
suspended or else clamped at the distal end. In most cases, the impact
face of the bar was carefully positioned outside the muzzle so as to
yield a condition of central normal collision, but in all experiments
involving conically tipped projectiles, a rod of smaller diameter was
placed inside the gun barrel to better assure attainment of the desired
collision condition. The initial velocity of the projectile was deter-
mined from the outputs of either two earphones or two photocells spaced
a known distance apart; alternatively, both initial and rebound projectile
speeds were measured either by means of a stroboscopic camera, a commer-
cially available Fastax camera operating up to 6,000 frames/sec, or an
intermediate speed camera of special design capable of a framing rate of
130,000 sec- 1 (Ref. 75 and 78). Except for a preliminary test, all
longitudinal pulses were detected by means of bonded strain gages of the
wire resistance or foil type, mounted in pairs at the same axial rod
position on opposite sides of a diameter or pair of faces, and coupled
so as to cancel the antisymnetric component of the pulse. The gages
were connected through a potentiometric or a Wheatstone bridge circuit
to a cathode-ray oscilloscope with a band pass of l½ cycles to 1 mega-
cycle, where a photograph of the pulse was obtained with an estimated
accuracy of 1%. The oscilloscopes were triggered by a signal produced
either by the passage of the striker or by the action of the wave gener-
ated in the bar. The force scale for each record was individually cali-
brated by observing the effect of a shunt resistance placed across the
gage circuit.

The terminal crater depth, which was needed for a comparison of the
permanent approach with the value calculated from the force-indentation
relations, was measured by means of a profilometer with an inherent
accuracy of + 1%, while the permanent deformation of the striker was
obtained even more accurately by means of a precision micrometer. A
separate check on the total compression of the Hopkinson bars indicated
that this effect could be neglected in the terminal-crater measurements.
In some of the later tests, the indentation history was ascertained by
means of the intermediate speed camera.

A preliminary investigation designed to ascertain the magnitude of
the dispersive effect and the proper interpretation of strain-gage
measurements was conducted on .1-inch square bars of 2024-T4 aluminum and
cold-rolled mild steel where dispersive phenomena would be even more
pronounced than in the case of a circular bar. These rods were struck
centrally in the longitudinal direction by a ½-inch-diameter steel sphere
with a hardness of Rockwell C 67 at velocities ranging from 130 to
190 ft/sec (Ref. 78). Typical force-time histories obtained for various
impact velocities in the steel bar are presented in Fig. 3, where the
original strain record has been replotted on the basis of the relation

F(t) = AEe(t) (48)
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FIG. 3. Force-Time Histories Obtained From the Longitudinal
Impact of a .7Inch-Diameter Sphere on .- Inch Square Bars of
Cold-Rolled Mild Steel at Various Initial Velocities. Rec-
ords obtained from two wire resistance gages placed on oppo-
site faces of the bar at the same station and coupled so as
to eliminate the antisymmetrical component of the pulse.
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Figure 4 shows several reflections of a pulse produced in a 33-inch-long
steel bar at an impact velocity of 179 ft/sec, measured by a set of wire
resistance gages located 22.5 inches from the free end of the rod. The
reduction of peak amplitude over twice the rod length is only 5%, the
first reflected pulse being virtually a mirror image of the wave during
initial transit; this indicates that three-dimensional dispersion during
this interval is not significant. The dispersive effect can, however,
be readily observed by the successively increasing number of oscillations
at the tail of the pulse, so that optimum fidelity can only be expected
during the first passage. A further indication of the combined disper-
sive effect is presented in Fig. 5, which compares the pulse produced in
a steel bar struck at 166 ft/sec as measured by gages located 2 inches
and 8 inches, respectively, from the impact point. Minor differences in
the pulse shape may be noted in these records, but no further significant
changes were found to occur beyond the 8-inch station. This indicates
that the effect of initial dilatation has been fairly well eliminated at
the nearer position, where x/Dequiv. is of the order of 4. Recent inves-
tigations of longitudinal pulse transmission involving the embedment of
gages have shown that a uniform distribution can be expected beyond a
position greater than two diameters from the impact point (Ref. 80).
The selection of gage positions in the longitudinal impact tests con-
formed to this requirement. Obviously, a gage should not be located at
a station where its record would be obscured by a reflection from either
end of the bar.

In order to settle the question whether a surface strain measurement
could adequately represent the average strain over the cross section, a
piezo-electric crystal with the same dimensions as the bar was sandwiched
between two polished sections of a 2024-T4 aluminum rod. Its response
was compared to that of two sets of coupled strain gages located on the
rod just ahead and just behind the crystal. An X-cut quartz crystal was
chosen as the transducer since its acoustic impedance was virtually the
same as that of the rod; the higher signal-to-noise ratio of this device
permitted an increase in the band-pass width relative to the strain-gage
signal, serving as a criterion for the adequacy of the frequency cut-
off level of the surface transducers. Figure 6 presents such a compari-
son for an impact velocity of 164 ft/sec, the force scale for the crystal
having been arbitrarily adjusted to provide the correct total impulse
for this test. For this gage location, approximately 20 diameters from
the impact point, the two methods yield virtually coincident pulses in
all respects. Although stress variations of only 3% may be expected on
the basis of a theoretical analysis of the bar for the pulse length-to-
diameter ratio of 10 employed here (Ref. 15), agreement in such detail
was not anticipated in view of the difference in frequency response of
the two systems. A further comparison of the change of momentum of the
striker with the impulse determined from the strain-gage records using
the static-gage factor supplied by the manufacturer and Eq. 48 indicated
a discrepancy of about + 2%, which is well within experimental error.
Thus, on the basis of versatility and ease of handling and installation,

20



KAVWES REPORT 8088

"= "0 50 100 150 2o00 / - 3o ",b--
Og.5 t,TIME , MICRO- SECONDS

FIG. 4. Reflections of a Pulse in a I- by I- by 33-Inch Steel
Rod Produced by the Longitudinal Impact of a i-Inch-Diameter
Steel Sphere at an Impact Velocity of 179 ft/sec. Gage
position: 10.7 inches from impact end.
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FIG. 5. Comparison of a Pulse in a J- by J- by 24-Inch
Mild Steel Bar Produced by the Longitudinal Impact of a
½-Inch-Diameter Sphere at an Impact Velocity of166 ft/sec. Measurement performed by means of two sets
of &,-inch wire resistance gages coupled to eliminate
the antisymmetric components of the pulse at stations
2 and 8 inches, respectively, from the impact point.
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FIG. 6. Comparison of the Pulse Produced by the Impact of a
½-Inch-Diameter Steel Sphere on a 7J-Inch-Square Bar of Alumi-
num at an Initial Velocity of !64 ft/sec. Measurement per-
formed by coupled wire resistance strain gages mounted on the
surface and by an X-cut quartz crystal wedged between two
portions of the bar. Force scale for the uncalibrated crys-
tal determined to correspond to the measured change of
momentum of the striker.
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the use of surface strain gages is to be preferred to crystal measure-
ments, since the former exhibit an adequate frequency response, permit
the direct application of the static calibration constant without cor-
rection in the range under consideration, and accurately represent the
average strain over the cross section without the necessity of tailoring
their shape to the bar geometry. The measurements further indicated that
any gage length smaller than 10% of the pulse length yielded the correct
pulse shape and total impulse. Crystal transducers should only te
employed for the determination of strains below the level of 10" in/in
where serious noise problems might be encountered in properly amplifying
standard strain-gage signals. However, even this effect could be avoided
by the use of transistorized strain gages with large gage factors that
have recently become comnercially available.

The conversion of force-time records of the type shown in Fig. 3 to
an experimental force-indentation relation was achieved by combining the
displacement relation of a striker of mass m with the one-dimensional
equation of motion of the bar, Eq. 19, yielding (Ref. 71,, 74, and 81)

t t t

a =vt dt Fdt 1 Fdt (49)
0 0

that can be applied stepwise over small time increments of the contact
period. The use of Eq. 19 without correction factors permits an enormous
simplification of the data-reduction procedure, but neglects, of course,
the effects of both initial spherical dilatation and three-dimensional
dispersion. In view of the preliminary experiments, the influence of
these characteristics was believed to be small as far as the gross
features of the pulse propagation in the bar was concerned, provided the
measuring station was suitably located and the pulse was sufficiently
long. Nevertheless, an inspection of the strain-gage records revealed a
noticeable rounding of both the initial and terminal portions of the
pulse that is largely attributable to the dispersive features of the rod
and is partly induced by the higher modes of symmetric propagation
(Ref. 74). The definition of the force-indentation relation was found
to be highly sensitive to the precise delineation of the start of the
pulse; to eliminate the influence of dispersion, the steeply rising por-
tion of each pulse was extrapolated linearly back to the base line in
the analysis of the records. As a consequence of this procedure, the
final values of the approach as calculated from the strain histories and
those measured subsequent to the tests were found to be in excellent
accord. The loss in pulse area incurred by this extrapolation affected
the impulse by less than 1% and produced a negligible shift of the cal-
culated force-indentation relations. The dispersive manifestation3 at
the end of the record, involving both a rounding of the descending part
of the pulse and subsequent high-frequency oscillations, did not exert
a significant influence on the character of the calculated curves and
were thus neglected in most instances. In some tests involving soft
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metals, such as lead, the strain gages were subjected to a permanent set
as indicated by a shift in the base line of their records; in all such
cases, the base-line position could be properly adjusted so as to permit
the use of data obtained under these conditions.

The use of Eq. 49 also neglects the vibrations of the striker that,
in the case of a spherical projectile, has been justified on theoretical
grounds (Ref. 2). However, for a cylindrical striker with a conical
head, a similar analysis cannot be performed even with the crudest types
of assumptions, and the magnitude of the vibrational energy in such a
body can consequently not be readily estimated. The predictions of
Eq. 49 for this case can, however, be compared with an analysis developed
for the longitudinal impact of bars with rounded ends which accounts for
successive reflections of plane elastic waves in the projectile by con-
sidering the distal end of the striker as a free surface and the impact
face as rigid (Ref. 81). This leads to the relation

Ftt - [+2 E F<t -- ]t (50)s o 2C2PlAlco I f F i=l Co I 1

where subscripts 1 and 2 denote the projectile and the bar, respectively,
k = 2L1 /colT defines the number of double wave reflections in the equiva-
lent striker length L1 during pulse duration T, and F < t - 2iLl/col >
delineates successive reflections at the impact point, an additional term
appearing in the integral for each return of the wave to the contact sur-
face. Nhile the actual conditions at this position will differ consider-
ably from those assumed in the derivation of Eq. 50, the postulated
situation represents the case of maximum vibratory energy storage in the
striker and thus permits, in conjunction with Eq. 49, the establishment
of upper and lower bounds concerning the magnitude of this effect.

In addition to theoretical justification, the validity of the
assumptions inherent in the data-conversion process is strongly supported
by the excellent agreement noted between the change of momentum of the
strikers and the measured impulse in the rod on one hand, and the meas-
ured and calculated values of the terminal approach on the other. Fur-
ther corroboration is provided by the good correspondence exhibited
between the calculated and photographically observed indentation histo-
ries. This is exemplified by Fig. 7 that shows the experimental force-
indentation curves and those determined from strain-gage records for the
impact on a i-inch-diameter steel rod of both a i-inch-diameter hard
steel sphere and a ½-inch-diameter cylindrical projectile of the same
mass and a conical tip of 21 = 120 degrees at about the same initial
velocity of 150 ft/sec. Figure 8 presents a comparison of results
obtained from a strain-time record by means of Eq. 49 and 50, respec-
tively, for the impact of a similar conical projectile at a velocity of
176 ft/sec and the corresponding photographic record. The two calculated
curves are nearly coincident, indicating that the vibrational effects in
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the cylindro-conical striker can indeed be neglected, and that Eq. 49 will
permit a satisfactory reduction of the strain-gage data. The permissi-
bility of treating the projectile as a nonvibrating mass could also have
been argued on the basis that several passages of the elastic wave must
occur during the contact period, producing a state of quasi-equilibrium
in the striker, under which circumstances this body can be treated as a
nonresonating, albeit deformable mass. All curves presented in Fig. 8
are in excellent accord with the subsequent measured value of the perma-
nent indentation of ar = 0.0372 inch, providing an additional check on
the justification for the use of Eq. 49 in all subsequent data analyses.

The static stress-strain curves and other relevant mechanical proper-
ties of two tool steels of different hardness, mild cold-rolled steel, and
two types of aluminum-alloy targets are presented in Fig. 9 (Ref. 74),
partially annealed tool steel, and lead comprising other target materials.
Dynamic tests were carried out by means of the Hopkinson bar technique
in the velocity range from 30-500 ft/sec with ½-inch-diameter spherical
steel or brass projectiles, 1 -inch-diameter strikers consisting of a

'2
cylindrical base and a conical tip with angles ranging from 2P = 20 degrees
to 2P = 160 degrees, composed variously of 2024-T4 aluminum, commercial
brass, or tool steel of various hardness, or similar conically headed
steel bullets with a total angle of 60 degrees, but hemispherically
rounded at the tip with radii varying between 0.025 and 2.0 inches.
Corresponding static force-indentation curves were obtained from measure-
ments of the slow compression in a standard testing machine of two short
I-inch-diameter blockcs of the target material that were separated by the
aspropriate projectile.

The static and dynamic force-indentation relations as well as the pre-
dictions of the Hertz law, Eq. 59, have been plotted in Fig. lO--14 for the
collision of steel pro ectiles with the target materials characterized in
,Fig. 9 (Ref. 74 and 75). The dynamic approach and recovery curves for all
target materials subjected to the impact of such strikers have been summa-
rized in Fig. 15; the compression phase for all substances except 2024-T4
aluminum could be represented by a single line over the entire velocity
range employed. Figure 16 presents additional results for the impact of
brass spheres against tool steel and the collision of a steel sphere with
a bar composed of two end sections of mild steel sweated onto a center
portion of quench-hardened tool steel where the strain gages were located.
The latter arrangement was dictated by the magnetostrictive properties
exhibited by mild steel that produce a spurious signal in strain-gage
records upon passage of a pressure pulse induced by the field effect of
the bar on the external wiring system.

The variation of the compression phase of the force-indentation rela-
tions with initial velocity obtained by means of conical strikers was con-
sidered to be sufficiently small except for the case of the minimum total
cone angle of 20 degrees so that the dynamic results could also be repre-
sented by a single curve, as indicated in Fig. 17. The static and dynamic
data for identical projectile and target materials involving conically
tipped projectiles of 60- and 120-degree total angle are compiled in
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Fig. 18 and 19, and sil.iis results are exhibited in Fig. 20 and 21 for
strikers and bars of differing composition. The greater scatter of the
curves at differing initial velocities for the smallest cone Ongle of
20 = 20 degrees involved in these tests is illustrated in Fig. 22 and 23.
A sequence of runs involving conically headed tool steel projectiles with
varying cone angles, but identical mass, fired with the same initial
velocity against tool steel rods yielded the information shown in Fig. 24.
Experiments carried out under similar conditions with hemispherically
tipped cylindro-conical slugs of both hardened and annealed tool steel
against similar target materials resulted in the data presented in
Fig. 25 and 26.

A comparison of the static and dynamic force-indentation curves for
spherical projectiles reveals a virtual coincidence for the case of quench-
hardened tool steel; a force up to 25% larger is required to produce the
same indentation under dynamic conditions for annealed tool steel, alumi-
num, and lead, while an increase of 50% is exhibited for cold-rolled mild
steel. The results for the hard tool steel are also in excellent agree-
ment with the predictions of Eq. 39, whereas large discrepancies can be
observed between values so computed and the experimental results for all
other materials. This apparent anomaly arises from the fact that the
impact process in the case of the hard steel was primarily elastic for the
initial velocity range employed, as evidenced by a crater recovery of the
order of 50%. This observation vindicates the use of the Hertz relation
under the proper circumstances even when some permanent set is produced,
but also denies its application to those cases of relatively small resti-
tution that were observed with other materials. The energy required for
the production of the permanent indentation in the hard steel is thus
only a small percentage of the initial kinetic energy. At velocities
above the range under investigation, the differences in the three sets of
curves for this substance would undoubtedly increase in a manner similar
to that exhibited by the other target materials. The larger increase in
force observed for the cold-rolled mild steel might have been expected on
the basis of the demonstrated higher strain-rate sensitivity of this mate-
rial, whose elastic limit under dynamic conditions reportedly can be
raised relative to its static value by a factor ranging from about 1.2 to
more than 3, depending upon composition and loading rate (Ref. 13 and 82).

Corresponding differences between static and dynamic data for coni-
cally tipped projectiles indicate an increase of the force ranging from
25 to 50% for the tool steel and aluminum targets and the various strikers
employed. The difference in the percentage increase of the force for the
different geometries of the projectile may be due to the greater inertial
resistance of the target that is accelerated more rapidly at the tip of a
conical bullet than at the point of maximum penetration of a sphere whose
radius is large compared with the crater depth. The results obtained with
conical indenters cannot be logically compared with the predictions of the
Hertz law, since the latter is based on a reversible process involving con-
tact surfaces defined by equations of the second Otgree, and both of these
requirements were seriously violated in this sequence of tests.
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200 E Or O%
MATERIAL IOIbl6i4 'U I03 Ib/i.&IOIb/ini

TOOL STEEL, Re 60-64 29.6 0.286 136 180.5
TOOL STEEL, RC 9-10 29.6 0.286 30.0 95.0
COLD-ROLLED

MILO STEEL, R1 95 29.6 0.286 70.0 65.0
2024 T-4 10.6 0.33 53.0 692

______ALUMINUM150 R@ 74
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U .. COLD-ROLLED
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ANNEALED./n Rc 8-10

50 ALUMINUM 2024 T-4

ALUMINUM 1100-Fov, I I I I
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STRAIN , 6 * IN/IN

FIG. 9. Static Stress-Strain Curves and Mechanical
Properties of Five Target Materials. E, modulus of
elasticity, 106 lb/in2 ; g, Poisson's ratio; a
static proportional limit, 10. lb/in2 ; au, stdtic
ultimate strength, 103 lb/in2; RC, Rockwell
hardness, scale C.
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25 RUN INITIAL VELOCITY, vo
I 151.0 ft/sec A
2 151.4 ft/sec /
3 205.0 ft/sec 5
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5 294.0 ft/sec
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It_ I
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0
0510 15 20

INDENTATION, ca, I03 INCHES

FIG. 10. Static and Dynamic Force-Indentation Curves for
Quench-Hardened Tool Steel, RC 60-64. Indenter, J-inch-
diameter hard steel sphere; target, i7inch-diameter bar.
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RUN INITIAL VELOCITY, Vo
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4 8 118.5 ft/sec _
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SI.

0
0 5 10 155

INDENTATION, 0(, I0 3 INCHES

FIG. 11. Dynamic Force-Indentation Curves for Annealed
Tool Steel, RC 6-12. Indenter, ½-inch-diameter hard
steel sphere; target, i-inch-diameter bar.
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400
RUN INITIAL VELOCITY, vo
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300
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t'; 20 0 N

,oor_• 000
(.) I-
OC,

100

0 10 15 20 25 30
INDENTATION, 0(, 105 INCHES

FIG. 14. Static and Dynamic Force-Indentation Curves
for Extruded Lead. Indenter, f-inch-diameter hard
steel sphere; target, 1-inch diameter bar.
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FIG. 15. Dynamic Force-Indentation Curves for the
Longitudinal Impact of a i-Inch-Diameter Hard Steel
Sphere Against the Plane End of .- Inch-Diameter
Bars of Various Metals.
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GJAGE OUENCH HARDENED STRIKER, j INCH DIAMETER SPHERE

MILD STEEL .. / STEEL RC64 S RKRM It.D • SE RUN iNITIAL VELOCITY MATERIAL

,O-Eft./e PRICTILE TARGETI--,'-- i2'1-, D, . -- , 21 268.4
18 - 2 172.4 STEEL COMPOSITE18 ~23 i101.4Rc4 STL

-- H STATIC Rc64 STEEL BAR
-- -- - -- -- - I 3TATIC 4 4

16 24 240.0 # OUENCH
- 25 I 55.0 BRASS HARDENEDS26 S7.2 R@i80& TOOL. S[IML
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2-~ 8I 1/ L --- - ~ -
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0', INDENTATION, I16" INCHES

FIG. 16. Static and Dynamic Force-Indentation Curves for the
Impact of a i-Inch-Diameter Sphere of Brass and Hard Steel
Against the Plane End of OInch-Diameter Bars of Steel.
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HALF- CONE ANGLE 3 - 30' CURVE CHOSEN AS AVERAGE
RUN INITIAL VELOCITY, Vo FOR THE THREE DYNAMIC TESTS

6 - 28 243.8 ft/sec.
- 29 151.4 ft./sec.

30 74.1 ft/see
5 -3 ., LI STATIC 0 101

,, --- 2 L STATIC
0 ---- L3 STATIC

.4

Icr -4
12 LI

I i

0 10 20 30 40 50 60 70 80 90 100 110 120
o( , INDENTATION, I0T INCHES

FIG. 17. Tprical Variation of Static and Dynamic
Force-Indentation Curves With Peak Load and Initial
Velocity. Indenter, cylindro-conical slugs of
annealed tool steel with half-cone angle • =
30 degrees; target, 3/8-inch-diameter annealed
tool steel bar.
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HALF-CONE ANGLE / -60010 - RUN INITIAL VELOCITY MATERIAL
ft/wc. PROJECTILE TARGET•-31 8187"• 32 127.9 ANNEALED ANNEALED
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SM 2  STATIC RC 13.7 Re 13.7
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S It//i

"-4/ I
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0. di/" 6r I
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FIG. 18. Static and Dynamic Force-Indentation Curves for
Conically Headed Projectiles of Annealed Tool Steel andand 2024-T4 Aluminum Striking 3/8-Inch-Diameter Bars of
Identical Materials.
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9
HALF-CONE ANGLE P-.30*

RUN INITIAL VELOCITY MATERIAL
8- ft./sc. PROJECTILE TARGET

- 37 243.8 t
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--- 0, STATIC TOOL STEEL TOOL STEEL
--- 02 STATIC Rc 13.5 RC 13t.
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02 - ,.-.0 0.1.00,,0

0 L.-.. ,- L--- _!4
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FIG. 19. Static and Dynamic Force-Indentation Curves for
Conically Headed Projectiles of Annealed Tool Steel and
2024-T4 Aluminum Striking 3/8-Inch-Diameter Bars of
Identical Materials.
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5 - HALF-CONE ANGLE j-30* . .-.
RUN INITIAL VELOCITY MATERIAL
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-44 240.3
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-02 STATIC
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, ~g 146III

-- " 1 __ I7I II.E
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FIG. 20. Static and Dynamic Force-Indentation Curves for

Conically Headed Projectiles of Annealed Tool Steel,
2024-T4 Aluminum and Brass Striking 3/8-Inch-Diameter
Bars of Dissimilar Target Materials.
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0 I0 20 30 40 50 60 70(, INDENTATION, S0-I INCHES

FIG. 21. Static and Dynamic Force-Indentation Curves for
Conically Headed Projectiles of Annealed Tool Steel,
2024-T~4 Aluminum and Brass Striking 3/8-Inch-Diameter
Bars of' Dissimilar Target Materials.
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35
HALF- CONE ANGLE 1 0

RUN INITIAL VELOCITY MATERIAL
3.0- ft/sc- PROJECTILE TARGET
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63 344.7 2024-T4 2024-T4
64 270.1 ALUMINUM ALUMINUM

_2. 65 145.3 R980 Re80
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FIG. 22. Dynamic Force-Indentation Curves for Conically
Headed Projectiles of Annealed Tool Steel and 2024-T4
Aluminum Striking 3/8-Inch-Diameter Bars of Identical
Target Materials.
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RUN INITIAL VELOCITY MATERIAL

ft./sec. PRO3ECTILE TARGET-
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j -69 357.0 2024-T4 ANNEALED
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to - 71 147.0 Re 65.7 Rc17
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FIG. 23. Dynamic Force-Indentation Curves for
Conically Headed Projectiles of Annealed Tool
Steel, 2024-T4 Aluminum and Brass Striking
3/8-Inch-Diameter Bars of Dissimilar Target
Materials.
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FIG. 24. Dynamic Force-Inden~taton Curves for
the Impact of an Annealed Tool Steel Cylindro-Conical Slug of Constant Mass With Half-ConeAngles Ranging from 10-80 Degrees Against thePlane End of an Annealed Tool Steel Rod.
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Inspection of Fig. 10-15 reveals that none of the metals subjected to
impact by a spherical projectile exhibited a linear force-indentation
curve; thus, a constant flow pressure does not prevail during the entire
indentation process, and Eq. 44 cannot be applied except as an approxi-
mation. Table 1 lists such average values of the mean static and dynamic
flow pressures obtained from the present series of tests and from other
investigations (Ref. 66 and 71). Good agreement exists between corres-
ponding values, particularly with respect to the ratio of dynamic to
static pressures, in spite of the differences in experimental arrangement
and properties of the materials examined. However, the inital portion of
all indentation diagrams displays an upward curvature similar to that
prescribed by Eq. 39; all materials except the hard steel also exhibit a
concave downward curvature at larger values of the indentation. This
curvature reversal cannot be expressed empirically by a relation of the
form of Eq. 42.

The validity of the assumption of a constant flow pressure for the
impact of conically tipped strikers, leading to Eq. 45 and 47, can be
checked by an examination of the results presented in Fig. 17-e4. A
logarithmic plot of these data indicates that all tests can be repre-
sented by Eq. 42 during the compression phase, but with exponents ranging
from n = 1.25 to n - 1.75 that differ from the value of r - 2 derived on
the basis of a constant value of po. This hypothesis saould consequently
be replaced by an expression in which the dependence of mean flow pressure
upon rate of indentation is recognized. Furthermore, the mean resistive
pressure at the instant of maximum penetration, computtd from Eq. 45, was
found to decrease with increasing impact velocity for otherwise identical
collision conditions. This trend cannot be explained on the basis of a
strain-rate effect, which would produce a contrary result, but must
instead be attributed to a change in the frictional mechanism at higher
indentation speeds. The assumption of a constant frictional coefficient,
embodied in Eq. 46 and 47, will certainly result in a grossly oversimpli-
fied description of the process.

The data shown in Fig. 24 indicate that, for otherwise identical
impact conditions, an increase in cone angle produces a higher peak force
and a smaller permanent conical crater. This result is expected since a
hard indenter of smaller cone angle will encounter less penetration area
and hence less resistance, while a soft indenter can deform more readily
the smaller the cone angle. An opposite conclusion was reached in another
investigation (Ref. 72) where, however, the experimental arrangement was
quite different and the collision velocity much lower. A simple empirical
relation could not be found to describe the envelope of the curves of
Fig. 24 in terms of the cone angle 2P. This situation prevents the
establishnent of a quantitative connection between corresponding tests
involving spherical and conically tipped indenters. Hcwever, it may be
observed from Fig. 7 that, for comparable initial velocities, a conical
striker develops a considerably greater penetration at a lower peak force
than a sphere of identical mass, and that the mean pressure at the instant
of maximum penetration for the cone is considerably larger, of the order of
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300%, fcr a cone angle 2S = 60 degrees, than for the spherical projectile.
The ratio of these mean peak pressures for the two types of projectile
geometry appeared to vary linearly with the lowest hardness number of
the two bodies involved in the collision.

The results presented in Fig. 25 and 26 (Ref. 76) were obtained in
an attempt to more clearly define the transition of the force-indentation
relations between spherical and conical strikers. While again no dis-
tinct separation in the characteristic shape of the curves could be
observed and a simple functional relation for these graphs could not be
determined, the blunter strikers--as measured by an increase of the
radius of the hemispherical tip--produced a greater maximum contact force
and a smaller maximum and permanent indentation. The variation of the
curves with tip radiua at constant cone angle is very similar to that
shown in Fig. 24 representing changes in the cone angle; both sets of
data reveal the tremendous influence of the bluntness, or "aspect ratio"
of the striker on penetration efficiency.

An analysis of the restitution processes in terms of a power law
between the force of contact and the crater recovery, a - ar, did not
yield any conclusive results since minute changes in the calculated
value of the permanent indentation, %r, produced significant variations
in the value of the exponent. For all types of strikers, the exponent
of the recovery relation

F = k (-r )n (51)

ranged from 1-3, depending upon the materials ant hardness of the bodies
involved and on the initial velocity.

The duration of contact and dimensions of the permanent crater meas-
ured for the impact of i-inch-diameter spheres on i-inch square rods
virtually coincided with results obtained for the transverse impact on
bars of the same cross section at identical initial velocities (Ref. 78
and 79), indicating that the peak forces produced under these circum-
stances should be comparable. This is substantiated by a computation
of the peak force produced by suck a i-inch-diameter steel sphere
striking a simply supported I- by J- by 24-inch mild steel beam at an
impact velocity of 150 ft/sec by means of Eq. 28, which yields a maximum
force of 9,300 pounds compared to a value of about 8,000 pounds obtained
by interpolation of Fig. 3.

The determination of experimental force-indentation curves for large-
sized projectiles becomes difficult, and it would be desirable to develop
a procedure for extrapolating the experimental relations outside the
range of the present tests. Furthermore, it is necessary to check the
validity of the data presented by comparing experimental results obtained
for the collision of strikers with other systems with corresponding cal-
culated values, using the indentation relations previously derived in
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conjunction with the deformation of such systems under a time-dependent
load. In order to achieve these objectives, a dynamic force-indentation
relation for the impact of a 1-inch-diamuter hard steel sphere striking
a mild steel target was constructed both by a combination of Eq. 41 and
Fig. 16, and by increasing the statically determined relation by the
factor of 50% indicated as the ratio of static to dynamic properties for
this material. The outcome of this procedure is shown in Fig. 27; the
restitution paths have been interpolated both from the static tests and
from the dynamic data obtained with .- inch-diameter spheres. It may be
noted that the two schemes for ascertaining the dynamic force-indentation
relation for this case are in reasonably close correspondence. The
history of the central deflection of a t- by 2- by 24-inch mild steel
beam supported on 30 lb/in springs at the ends under the action of a
central transverse impact by a hard steel sphere of 1-inch diameter at
"a velocity of 28.8 ft/sec was now computed with the aid of Fig. 27 and
"a procedure previously developed (Ref. 83) in accordance with the
equation

00 2)2 t t t
w(½L, t)= - E F(')sin i(t-T)d = v t-11 dt Fdt-cpA i=l L o

Xi f xl 2 dx (52)

The time variation of the outer fiber stress determined from these
calculations by means of the equation

- 2 . w (53)
2

where b is the half-beam depth, are compared to corresponding experi-
mental data in Fig. 28 (Ref. 83.. The same computation performed on the
basis of the Hertz law, Lq. 39, is also presented; it may be noted that
the test results are about equally well described on the basis of either
type of force-indentation relation. The use of the plastic indentation
relation is to be preferred, however, since the latter correctly pre-
dicts the size of the permanent crater, which cannot be deduced from
the elastic law governing, the fcrmation of the dent. The highly satis-
factory agreement between analysis and experimental results for this
example also lends a considerable measure of confidence to the appli-
cation of the experimental force-indentation curves to other collision
conditions.
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FIG. 2'. Elastic and Plastic Force-Indentation
Curves Under Static and Dynamic Conditions
Deduced From Theory and Experimental Results for
"a 1-Inch-Diameter Hard Steel Sphere Penetrating
"a Plane Surface of Cold-Rolled Mild Steel.
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60 CONTACT RELATI ON
a) HERTZ LAW, EQ. 39
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FIG. 28. Experimental and Theoretical Stress-Time
Histories at the Outer Fiber of the Center of a ý-
by 2- by 24-Inch Cold-Rolled Mild Steel Beam Sup-
ported at the Ends on 30-lb/in Springs When
Subjected to Central Transverse Impact by a 1-Inch-
Diameter Hard Steel Sphere at a Velocity of
28.8 ft/sec.
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